

Nitrogen Management

www.taurus.ag

Advancing Every Acre™

TABLE of CONTENTS

How does all this terminology relate to Nitrogen Management?	3
Nitrogen cycle	4
The Nitrogen conversion process	5
Negatively charged soil and plant available forms of Nitrogen	6
Crash Course on Nitrogen	7
The proper amount of Nitrogen is important	8
Volatilization	9
Hydrolysis	. 10

Why soil pH is important	11
NBPT urease inhibitors	12
When to consider an NBPT stabilizer?	. 13
Nitrification	14
Potential loss mechanisms of Nitrate	15
Nitrification inhibitors	16
When to consider nitrification Inhibitors?.	17
Considerations when applying urea, UAN, or NH_3	18
Learn more about Nitrogen management .	19

www.taurus.ag

How does all this TERMINOLOGY RELATE to NITROGEN MANAGEMENT?

NITROGEN CYCLE

www.taurus.ag

Nitrogen Management Strategies

The NITROGEN CONVERSION PROCESS

NEGATIVELY CHARGED SOIL and PLANT AVAILABLE FORMS of NITROGEN

Both Clay Content and Organic Matter have a large number of negative charges on their surface, thus attracting cation elements. At the same time they also repel anion elements ("like" charges).

CRASH COURSE on NITROGEN

When a fertilizer company manufactures nitrogen fertilizer, it is taking nitrogen from the air and converting it to a form plants can eventually use. The first step to creating any form of Nitrogen fertilizer is to make ammonia (NH₃), which is 82% Ammonia Nitrogen (82-0-0).

The PROPER AMOUNT of NITROGEN is IMPORTANT

Nitrogen Deficiency

- Poor plant growth and leaves that are pale green or yellow due to inability to make sufficient chlorophyll
- Low Protein Content
- Nitrogen is a major component of amino acids, the building blocks of proteins, and the plant

Excess Nitrogen

- Can cause increase in lodging, excess foliage growth, and nitrate leaching into ground water
- Law of Diminishing Returns
- Can lead to other nutrient imbalances and could open the plant up to disease

VOLATILIZATION

HYDROLYSIS

Ammonia needs to find hydrogen to stabilize as Ammonium.

HYDROLYSIS greatly Increases soil pH around urea granule

CONSIDERATION of HYDROLYSIS

- Soil pH
- Soil Moisture
- Soil Temperature (-20°C)
- Thatch Cover 20-30 times higher urease concentration than underlying soil*
- Placement & Concentration
- * https://umanitoba.ca/faculties/afs/agronomists_conf/media/ Fernandez_NitrogenAdditivesWinnipegDec152016.pdf

Less potential losses are associated with low pH soils than high pH, due to the amount of Hydrogen available in each soil.

- 10 -

www.taurus.ag

WHY SOIL pH is IMPORTANT

There can be a wide variance between soils, even within the same field. Some soils have a higher potential for losses based on the pH.

Nitrogen Management Strategies

NBPT UREASE INHIBITORS (N-butyl-thiophosphorictriamide)

- NBPT inhibitors minimize the urease enzyme activity during the hydrolysis of urea/UAN
- NBPT inhibitors are capable of reducing N loss as ammonia by up to 90% *
- Urease enzyme remains active in the soil as cold as -20°C
- Helps retain more Nitrogen in root zone

* Results are dependent on a number of factors, including soil conditions, temperature and moisture

When to CONSIDER an NBPT STABILIZER?

HIGH SOIL pH

High soil pH means less Hydrogen to stabilize ammonia. Using an NBPT slows down the conversion of urea to ammonia gas, extending the time available for ammonia stabilization to 13-28 days.

% Volatilization based upon soil pH ¹

Soil pH						
	5.5	6	6.5	7	7.5	
)ays	% of Added N Volatilized					
0	0	0	0	0	0	
2	0	0	0	1	5	
4	2	5	10	18	20	
6	5	7	11	23	30	
8	9	12	18	30	33	
10	10	13	22	40	44	

- Ammonia (negative charge) needs to bind with Hydrogen (positive charge) to form ammonium
- Hydrolysis process can spike pH 2 to 3 points (ie. pH 5 can go to 7.5 which is still prone to loss)

Overdahl et al., 1960. Soil Sci. Soc. Am. Proc. 24:87-90

NITRIFICATION

With appropriate soil temperatures (starts at 4°C) and biological activity, Ammonium starts to convert to Nitrite and the process begins.

CONSIDERATION of NITRIFICATION LOSSES

- Soil type (CEC)
- Soil moisture
- Soil temperature: Nitrosomonas and Nitrobacter bacteria will remain active in soil as low as +4°C

POTENTIAL LOSS MECHANISMS of NITRATE

DENITRIFICATION

- Denitrification is the process where bacteria strip Oxygen from Nitrate and release N, gas into atmosphere
- Denitrification favors conditions of saturated/water logged soils
- Denitrification favors low oxygen or heavy clay soils (CEC > 23)

LEACHING

- Leaching occurs when negatively charged Nitrate (cannot bind to soil particle) is **moved below the plant's root** zone by water
- Leaching is most common in course textured soil (sandy soil) (CEC < 10)
- Leaching favors conditions of heavy rainfall when in Nitrate form

Nitrate

X DOESN'T BIND TO NEGATIVELY CHARGED S

Plant Available

Not Plant Available

DOWN

}

N-LOSS

NO₃-

ACHING

NITRIFICATION INHIBITORS

• Nitrapyrin, DCD, and DMPP products work by inhibiting the activity of the Nitrosomonas bacteria.

• Nitrosomonas and Nitrobacter bacteria will remain active in the soil as low as +4°C

When to CONSIDER NITRIFICATION INHIBITORS?

+t°C	Nitrification inhibitors work best in early fall where the conversion of Ammonium to Nitrate can still take place due to warmer soil temperatures
	Saturated/Water logged soils
<u>}</u>	Course textured soils prone to leaching
(h)	
<u>ک</u>	Long season crops
20-70 davs	Active in the soil 20 to 70 days

CONSIDERATIONS when APPLYING UREA, UAN, or NH₃

LEARN MORE about NITROGEN MANAGEMENT

AD OFFICE:	#208, 279 Midpark Way SE, Calgary, AB, T2X 1M2	403-454-2831	admin@taurus.ag
aig Davidson	SW MB/ SE SK	204.761.5991	craig@taurus.ag
avis Avery	Central/Eastern MB	431.777.9252	travis@taurus.ag
aude Sander	Central/Northern SK	306.361.9085	claude@taurus.ag
ddy McNinch	Central AB	403.396.6300	roddy@taurus.ag
b Mann	Southern BC	403.650.7978	rob@taurus.ag
ane Beagle	Southern AB	403.650.????	thane@taurus.ag
am Smith	Southern SK	403.815.4787	adam@taurus.ag
ett Guynup	Peace Region	587.202.9165	brett@taurus.ag

in Taurus Agricultural Marketing Inc.

BE PART OF THE NETWORK Become a Taurus Insider

Sign up on our website